Subpart M - Pipeline Sampling (§§761.240-761.257)

- 1. Cut into 40 foot segments, and number from upstream end.
- Is pipeline section greater than 3 miles long? 2.
 - Yes Sample first segment, and segments every half mile or 66th segment (1, 67, 133, etc.)
 - No Take 7 samples: first segment, last segment, and five interim segments
- 3. Sampling points are on upstream end of segment, inside pipe on bottom

Definition of Pipe Segment and Pipeline Section (§761.240)

Sampling Pipeline Section (longer than 3 miles) (§761.247)

Every half mile, or 66th segment

8/5/98 Preamble page 35405

Codified 63 FR 35463

Sampling Pipeline Section (shorter than 3 miles) (§761.247)

- 1. Number segments (i.e., 1-383)
- 2. Sample first and last segments
- 3a. Find Sampling Interval
 - = Total number of segments divided by 6
 - =383/6=63.8=64

Take 5 interim samples at sampling intervals (i.e., 65, 133, 199, 265, and 331)

or

3b. Use random number generator to find 5 interim sampling points

383

Direction of Former Gas Flow

Three Dimensional View

Sampling Point

Subpart O Verification Sampling of Self-Implementing Cleanup (§§761.280 -761.298)

- 1. Overlay grid oriented on Magnetic N/S/E/W
- 2. Mark Sampling Points
- 3. Collect Samples
- 4. Composite Samples

Center Grid on Remediated Area

Mark Sampling Points at Intersection of Grid Lines

Area of Inference Around Sampling Point

Compositing Areas: Non-point Source

Compositing Areas: Point Source

1. Use smaller grid interval

2. Use random number to identify 3 coordinates within remediated area

Subpart P - Sampling Non-Porous Surfaces by Halves (§761.306)

- 1. Divide 1 square meter area in half
- 2. Assign each half "heads" or "tails"
- 3. Flip coin
- 4. Select "winning side" and divide in half
- 5. Repeat from step 2 until selected half is >100 cm² and <200 cm²

Subpart P - Sampling Non-Porous Surfaces by Halves (§761.306)

Subpart P - Sampling Non-Porous Surfaces by Halves (§761.306)

Subpart R - Sampling a Conical Pile (§761.347)

Center of pile

Circumference

- 1. Mark center of pile using rod, stake, etc.
- 2. Run string from top of center marker to base (b)
- 3. Measure circumference (c) from base (b)

8/5/98 Preamble page 35412 Codified 63 FR 35470

Top View

- 4. Find sampling radius (r) by multiplying circumference (c) by a random number
- 5. Run string from center marker to base at point (r)
- 6. Measure length (l) from center marker to base (r)

Cross Section at r

- 7. Find sampling length (s) by multiplying (l) by a random number
- 8. Starting from base (r), find point (s) on length (l)

Three Dimensional View

Cross Section at r

- 9. Determine the vertical distance (v) by inserting a rod marked in cm
- 10. Find sampling depth (t) by multiplying (v) by a random number
- 11. Take sample at point (t)

Three Dimensional View

Sampling Point

1. Configure pile so it is a rectangle no more than 30 cm (1 ft) deep

2. Divide pile into quarters

- 3. Divide quarters into quarters, and number from 1 to 4
- 4. Randomly select 2 of the 4 numbers to sample (e.g., 1 and 4)

5. If volume of 1/16th of the original area is greater than 76 liters, continuing dividing into quarters until volume is <76 liters but >19 liters

1	2			1	2		
3	4			3	4		
		1	2			1	2
		3	4			3	4
1	2			1	2		
3	4			3	4		
		1	2			1	2
		3	4			3	4

- 6. Number and randomly select subsection for sampling (e.g., 4)
- 7. Take samples in same position in each corresponding subsection
- 8. Composite samples